Montag, 29. Juli 2013

Katalysatoren bei der Arbeit zugeschaut – auf atomarer Ebene


Elementarste Prozesse im Rampenlicht: 
Donor- und Akzeptorbindungseigenschaften 
des Modellkatalysators [Fe(CO)5] in Lösung 
werden mithilfe von resonanter inelastischer 
Röntgenstreuung untersucht.
Grafik: HZB/E.Suljoti



Hochbegabungspresse

Innovative Methodenkombination am HZB führt zu grundlegenden Erkenntnissen in der Katalyseforschung

Die Entwicklung von Materialien mit neuartigen katalytischen Eigenschaften hat gerade in der Energieforschung große Bedeutung. Besonders wichtig ist dabei das Verständnis dynamischer Vorgänge beim Katalyseprozess auf atomarer Ebene, wie beispielsweise die Bildung und das Aufbrechen chemischer Bindungen oder so genannte Ligandenaustauschreaktionen. Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben jetzt  gemeinsam mit Kooperationspartnern ein als RIXS bezeichnete spektroskopische Methode mit der so genannten ab initio-Theorie kombiniert, um diese Prozesse an einem für die Katalyseforschung bedeutenden metallischen Molekülkomplex – dem Eisencarbonylkomplexdetailliert zu beschreiben. Ihre Ergebnisse veröffentlicht das Team heute in dem renommierten Fachjournal „Angewandte Chemie International Edition“.

Eisencarbonylkomplexe werden bei einer großen Anzahl chemischer Reaktionen und industrieller Prozesse eingesetzt, wie beispielsweise in der lichtinduzierten Wasserreduktion oder der katalytischen Kohlenmonoxid (CO)-Entfernung aus Abgasen. Die Katalyse erfolgt durch den schnellen Aufbau und das anschließende Lösen chemischer Bindungen zwischen dem Metallzentrum und dem Carbonylliganden. „Für uns ist es essentiell, die Stärke von Orbital-Wechselwirkung in Carbonylkomplexen durch eine direkte Untersuchung der Metallzentren und des Liganden bestimmen zu können“, sagt Prof. Dr. Emad Flear Aziz, Gruppenleiter der HZB-Nachwuchsgruppe `Struktur und Dynamik funktionaler Materialien´. Bisher war diese Untersuchung in homogener Katalyse in Lösung nicht möglich. Die Entwicklung der neuen „LiXEdrom“ Versuchsstation für Messungen an einem Mikro-Flüssigkeitsstrahl in der HZB-Nachwuchsgruppe hat die RIXS-Experimente (Resonant Inelastic X-ray Scattering)  an funktionalen Materialien unter in situ-Bedingungen ermöglicht.

Am Elektronenspeicherring BESSY II des HZB ist es Aziz Team gemeinsam mit Wissenschaftlern aus verschiedenen Universitäten nun gelungen, unter Bedingungen, bei denen auch in der Realität die Katalyse abläuft (in-situ), sowohl das Metall als auch die Liganden mittels der RIXS-Spektroskopie zu untersuchen. Sie stellten eine sehr starke Orbital-Wechselwirkung zwischen dem Metall und dessen Liganden fest, die zu einer Schwächung und Verlängerung der chemischen Bindung während der RIXS-Anregungen führte. Die experimentellen Ergebnisse wurden durch theoretische ab initio-Verfahren von der Universität Rostock unterstützt. „Mit dieser neuen Methodenkombination haben wir grundlegende Einsichten in die elektronische Struktur von Eisencarbonyl-Komplexen unter katalyserelevanten Bedingungen erhalten“, sagt Aziz: „Unser Ansatz kann zu einem besseren Verständnis von Reaktionsdynamiken und Metall-Liganden-Lösungsmittel-Wechselwirkungen auf sehr kurzen Zeitskalen beitragen. Das führt zu einer verbesserten Kontrolle von katalytischen Eigenschaften – und birgt großes Potential für die Herstellung neuer katalytisch aktiver Materialen.“

Die Arbeiten fanden in Kooperation mit Prof. Dr. M. Bauer (Fachbereich Chemie, TU Kaiserslautern), Prof. Dr. J.-E. Rubensson (Dept. of Physics and Astronomy, Uppsala University) und Prof. Dr. O. Kühn (Institut für Physik, Universität Rostock) statt.

Der Artikel (DOI: 10.1002/anie.201303310) wurde am 23. Juli  im Magazin „Angewandte Chemie – International Edition“ veröffentlicht (http://onlinelibrary.wiley.com/doi/10.1002/anie.201303310/abstract).

Bildunterschrift: Elementarste Prozesse im Rampenlicht: Donor- und Akzeptorbindungseigenschaften des Modellkatalysators [Fe(CO)5] in Lösung werden mithilfe von resonanter inelastischer Röntgenstreuung untersucht.
Grafik: HZB/E.Suljoti


Weitere Informationen:

Prof. Dr. Emad F. Aziz
Leiter Nachwuchsgruppe – Funktionale Materialien in Flüssigkeiten
Tel.: +49 (0)30-8062-15003

Dr. Edlira Suljoti
Nachwuchsgruppe – Funktionale Materialien in Flüssigkeiten
Tel.: +49 (0)30-8062-13443

Pressestelle
Hannes Schlender
Tel.: +49 (0)30-8062-42414 / -42034
Fax: +49 (0)30-8062-42998